A5: Workflows for Annotation-Efficient Machine Learning in Biomedical Imaging Research

Continued from A5: Dependability, Adaptability and Uncertainty Quantification for Data Analysis Workflows in Large-Scale Biomedical Image Analysis

Description

We aim to refine machine learning workflows in biomedicine by enhancing annotation efficiency. Currently, the lack of high-quality training data and time-consuming manual annotations hinder progress. To address this, we will explore self-supervised representation learning, which utilizes unlabeled data, potentially reducing the need for manual annotations. A5 will focus  on creating efficient frameworks to train, explore, and benchmark such representation learning approaches.

Scientists

  • Marc-Andre Schulz

Publications

11 entries « 1 of 2 »

2024

Schintke, Florian; Belhajjame, Khalid; Mecquenem, Ninon De; Frantz, David; Guarino, Vanessa Emanuela; Hilbrich, Marcus; Lehmann, Fabian; Missier, Paolo; Sattler, Rebecca; Sparka, Jan Arne; Speckhard, Daniel T.; Stolte, Hermann; Vu, Anh Duc; Leser, Ulf

Validity constraints for data analysis workflows Journal Article

In: Future Generation Computer Systems, vol. 157, pp. 82–97, 2024, ISSN: 0167-739X.

Abstract | Links | BibTeX

Oliveira, Marta; Wilming, Rick; Clark, Benedict; Budding, Céline; Eitel, Fabian; Ritter, Kerstin; Haufe, Stefan

Benchmarking the Influence of Pre-training on Explanation Performance in MR Image Classification Journal Article

In: Frontiers in Artificial Intelligence, vol. 7, pp. 1330919, 2024.

BibTeX

2023

Schulz, Marc-Andre; Eitel, Fabian; Asseyer, Susanna; Meyer-Arndt, Lil; Schmitz-Hübsch, Tanja; Bellmann-Strobl, Judith; Cole, James; Gold, Stefan; Paul, Friedemann; Ritter, Kerstin; Weygandt, Martin

Similar neural pathways link psychological stress and structural brain health in health and multiple sclerosis Journal Article

In: iScience, 2023.

Links | BibTeX

Rane, Roshan Prakash; Kim, JiHoon; Umesha, Arjun; Stark, Didem; Schulz, Marc-André; Ritter, Kerstin

Identifying confounders in deep-learning-based model predictions using DeepRepViz Miscellaneous

2023.

BibTeX

Rumberger, Josef Lorenz; Franzen, Jannik; Hirsch, Peter; Albrecht, Jan Philipp; Kainmueller, Dagmar

ACTIS: Improving data efficiency by leveraging semi-supervised Augmentation Consistency Training for Instance Segmentation Workshop

2023.

BibTeX

2022

Schulz, Marc-Andre; Koch, Alexander; Guarino, Vanessa Emanuela; Kainmueller, Dagmar; Ritter, Kerstin

Data augmentation via partial nonlinear registration for brain-age prediction Proceedings Article

In: Machine Learning in Clinical Neuroimaging, Lecture Notes in Computer Science, 2022.

BibTeX

Schulz, Marc-Andre; Bzdok, Danilo; Haufe, Stefan; Haynes, John-Dylan; Ritter, Kerstin

Performance reserves in brain-imaging-based phenotype prediction Journal Article

In: bioRxiv, 2022.

Abstract | Links | BibTeX

2021

Eitel, Fabian; Schulz, Marc-Andre; Seiler, Moritz; Walter, Henrik; Ritter, Kerstin

Promises and pitfalls of deep neural networks in neuroimaging-based psychiatric research Journal Article

In: Experimental Neurology, vol. 339, 2021.

BibTeX

Rumberger, Josef Lorenz; Yu, Xiaoyan; Hirsch, Peter; Dohmen, Melanie; Guarino, Vanessa Emanuela; Mokarian, Ashkan; Mais, Lisa; Funke, Jan; Kainmueller, Dagmar

How shift equivariance impacts metric learning for instance segmentation Proceedings Article

In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7128–7136, 2021.

BibTeX

0000

Schulz, Marc-Andre; Albrecht, Jan Philipp; Yilmaz, Alpay; Koch, Alexander; Leser, Ulf; Ritter, Kerstin; Kainmüller, Dagmar

TLIMB - A Transfer Learning Framework for IMage Analysis of the Brain DARLI-AP Proceedings Article Forthcoming

In: Data Analytics solutions for Real-LIfe APplications, Forthcoming.

BibTeX

11 entries « 1 of 2 »